

CHEMICAL EQUILIBRIUM

- **14.1** The Nature of Chemical Equilibrium
- **14.2** The Empirical Law of Mass Action
- **14.3** Thermodynamic Description of the Equilibrium State
- **14.4** The Law of Mass Action for Related and Simultaneous Equilibria
- **14.5** Equilibrium Calculations for Gas-Phase and Heterogeneous Reactions

1

$NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$
 $NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$ heating

14.1 THE NATURE OF CHEMICAL EQUILIBRIUM

$[Co(H₂O)₆]$ ²⁺ + 4 Cl⁻ \implies $[CoCl₄]$ ²⁻ + 6 H₂O A B C D

 $[Co(H₂O)₆]$

Some Co(II) Some Co(II) \rightarrow [CoCl₄]

Add HCl to (a): Add water to (b): 2^2 \rightarrow $[Co(H_2O)_6]^{2+}$

Lavender color of (c) & (d): $[CoCl₄]²⁻ + [Co(H₂O)₆]²⁺$

Fig. 14.2. Time dependence of reactants and products in the spontaneous reaction: $[Co(H_2O)_6]^{2+} + 4 CI \cong [CoCl_4]^{2-} + 6 H_2O.$ (a) Partial conversion of $[Co(H₂O)₆]^{2+}$ into $[CoCl₄]^{2-}$. (b) Partial conversion of $[CoCl₄]²$ into $[Co(H₂O)₆]²⁺$.

Characteristics of the Equilibrium State

$H_2O(l) \rightleftarrows H_2O(g)$

Forward reaction: Evaporation of liquid water to water vapor Backward reaction: Condensation of water vapor to liquid water At equilibrium, the forward and backward rates become equal.

Fundamental Characteristics of equilibrium states

- 1. No macroscopic evidence of change
- 2. Reached by spontaneous processes
- 3. Dynamic balance of forward and reverse processes
- 4. Same regardless of direction of approach

14.2 THE EMPIRICAL LAW OF MASS ACTION

Expressions of Equilibrium Constant: Law of Mass Action

 \triangleright Reactions in solution (C.M. Guldberg & P. Waage, 1864) $aA + bB \nightharpoonup cC + dD$

$$
K_{\rm C} = \frac{[C]_{\rm eq}^c [D]_{\rm eq}^d}{[A]_{\rm eq}^a [B]_{\rm eq}^b}
$$

~ dimensions of (conc) *c***+***d***-***a***-***b*

 \triangleright Reactions in the gas phase

$$
K_{\rm p} = \frac{(P_{\rm C})^c_{\rm eq}(P_{\rm D})^d_{\rm eq}}{(P_{\rm A})^a_{\rm eq}(P_{\rm B})^b_{\rm eq}}
$$

~ dimensions of (press)*^c***+***d***-***a***-***^b*

◆ **Dalton's Law of Partial Pressures**

The total pressure of a mixture of gases is the sum of the partial pressures of its component.

$$
P = P_{\rm A} + P_{\rm B} + \dots = \sum_{\rm i} P_{\rm i}
$$

 \triangleright **Mole fraction** of the component A, X_A

$$
x_{A} = \frac{n_{A}}{n_{A} + n_{B} + \cdots}, \qquad x_{A} + x_{B} + \cdots = 1
$$

$$
P_{\rm A} = \frac{n_{\rm A}RT}{V}, \quad P = \frac{nRT}{V} = \left(n_{\rm A} + n_{\rm B} + \cdots\right)\frac{RT}{V} \longrightarrow P_{\rm A} = \frac{n_{\rm A}P}{n_{\rm A} + n_{\rm B} + \cdots} = x_{\rm A}P
$$

$$
\therefore P_{\rm A} = x_{\rm A} P
$$

- **Law of Mass Action for Gas-Phase Reactions**
- **❖ Thermodynamic Equilibrium Constant,** K ~ dimensionless

$$
a_{\text{W}} \text{ of Mass Action for Gas-Phase Reactions}
$$
\n
$$
a_{\text{R}} \text{hermodynamic Equilibrium Constant, } K \sim \text{dim}(\frac{P_c/P_{\text{ref}})^c (P_p/P_{\text{ref}})^d}{(P_p/P_{\text{ref}})^a (P_p/P_{\text{ref}})^b} = K \qquad \frac{P_c^c P_{\text{B}}^d}{P_A^a P_B^b} = K (P_{\text{ref}})^{(c+d-a-b)} = K_p
$$
\n
$$
a_{\text{S}} \text{ For } P_{\text{ref}} = 1 \text{ atm}, K = K_p \text{ numerically.}
$$
\n
$$
a_{\text{S}} \text{ from a general reaction}
$$
\n
$$
a_{\text{S}} \text{ from a general reaction}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional potential}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional potential}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional potential}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional potential}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional potential}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional potential}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$
\n
$$
a_{\text{S}} \text{ from the total of the two-dimensional field}
$$

For $P_{\text{ref}} = 1$ atm, $K = K_p$ numerically.

 Mass action law for a general reaction involving ideal gases

$$
\frac{(P_{\rm C})^c (P_{\rm D})^d}{(P_{\rm A})^a (P_{\rm B})^b} = K
$$

Law of Mass Action for Reactions in Solution

$$
\frac{([C]/c_{\text{ref}})^c ([D]/c_{\text{ref}})^d}{([A]/c_{\text{ref}})^a ([B]/c_{\text{ref}})^b} = K \xrightarrow{c_{\text{ref}} = 1 \text{ M}} \frac{[C]^c [D]^d}{[A]^a [B]^b} = K
$$

Law of Mass Action for Reactions

- 1. Gases appear in *K* as partial pressures, measured in atm.
- 2. Dissolved species enter as concentrations, in moles per liter.
- 3. Pure solids, pure liquids, solvent in chemical reaction do not appear in *K.*
- 4. Partial pressures and concentrations of products appear in the numerator, and those of reactants in the denominator; each is raised to a power equal to its coefficient in the balanced chemical equation for the reaction.

14.3 THERMODYNAMIC DESCRIPTION OF THE EQUILIBRIUM STATE

Dependence of Gibbs Free Energy of a Gas on Pressure

4.3 THERMODYNAMEO DESCRIPTION OF THE
\nEQUILLIBRIUM STATE
\nDependence of Gibbs Free Energy of a Gas on Pressure
\nAt constant T,
$$
P_1 \rightarrow P_2
$$
 (ideal gas)
\n
$$
\Delta G = \Delta (H - TS) = \Delta H - T \Delta S = -T \Delta S
$$
\n
$$
(\Delta H = 0 \text{ at constant } T \text{ for an ideal gas})
$$
\n
$$
\Delta S = nR \ln \left(\frac{V_2}{V_1}\right) = nR \ln \left(\frac{P_1}{P_2}\right) = -nR \ln \left(\frac{P_2}{P_1}\right) \Delta G = nRT \ln \left(\frac{P_2}{P_1}\right)
$$
\n
$$
\Delta G = nRT \ln \left(\frac{P}{P_{\text{ref}}}\right) = nRT \ln P
$$
\n
$$
\Delta G = nRT \ln \left(\frac{P}{P_{\text{ref}}}\right) = nRT \ln P
$$
\nKATST

 \triangleright ΔG of taking the gas from the *reference state* ($P_{\text{ref}} = 1$ atm) to any *P*:

$$
\Delta G = nRT \ln \left(\frac{P}{P_{\text{ref}}} \right) = nRT \ln P
$$

Equilibrium Expression for Reactions in the Gas Phase

Fig. 14.4 A three-step process (red arrows) to calculate ΔG of a reaction (blue arrow) for which reactants and products are not in their standard states of 1 atm.

Step 1:
$$
\Delta G_1 = 3RT \ln \left(\frac{P_{\text{ref}}}{P_{\text{NO}}} \right) = RT \ln \left(\frac{P_{\text{ref}}}{P_{\text{NO}}} \right)^3
$$

Step 2: $\Delta G_2 = \Delta G^{\circ}$

Step 3:
$$
\Delta G_3 = RT \ln \left(\frac{P_{N_2O}}{P_{ref}} \right) + RT \ln \left(\frac{P_{NO_2}}{P_{ref}} \right) = RT \ln \left[\left(\frac{P_{N_2O}}{P_{ref}} \right) \left(\frac{P_{NO_2}}{P_{ref}} \right) \right]
$$

$$
\Delta G = \Delta G_1 + \Delta G_2 + \Delta G_3 = \Delta G^{\circ} + RT \ln \left[\frac{\left(P_{\text{N}_2\text{O}} / P_{\text{ref}} \right) \left(P_{\text{NO}_2} / P_{\text{ref}} \right)}{\left(P_{\text{NO}} / P_{\text{ref}} \right)^3} \right]
$$

At equilibrium, $\Delta G = 0$ (const $T \& P$).

$$
-\Delta G^{\circ} = RT \ln \left[\frac{\left(P_{N_2O} / P_{\text{ref}} \right) \left(P_{NO_2} / P_{\text{ref}} \right)}{\left(P_{NO} / P_{\text{ref}} \right)^3} \right] \equiv RT \ln K(T)
$$

In other words, $\Delta G = 0$ as each species has its own equilibrium concentration that is given by *Go*KAIST **CHEMIS General Chemistry I**

For the general reaction, $aA + bB \rightarrow cC + dD$ At equilibrium,

$$
-\Delta G^{\circ} = RT \ln \left[\frac{\left(P_{c} / P_{ref} \right)^{c} \left(P_{D} / P_{ref} \right)^{d}}{\left(P_{A} / P_{ref} \right)^{a} \left(P_{B} / P_{ref} \right)^{b}} \right] \equiv RT \ln K(T)
$$

Reactions in Ideal Solution

For the general reaction, $aA + bB \rightarrow cC + dD$ At equilibrium,

$$
-\Delta G^{\circ} = RT \ln \left[\frac{\left([C]/c_{\text{ref}} \right)^{c} \left([D]/c_{\text{ref}} \right)^{d}}{\left([A]/c_{\text{ref}} \right)^{a} \left([B]/c_{\text{ref}} \right)^{b}} \right] = RT \ln K(T)
$$

 $\Delta G = nRT \ln (P/P_{\text{ref}}) = nRT \ln P$ (ideal gas) $= nRT \ln (c/c_{\text{ref}}) = nRT \ln c$ (ideal solution)

 $\Delta G = nRT \ln a$ (nonideal system)

Activity coefficient, γ_i ($\gamma_i = 1$ for the reference state) $a_i = \gamma_i P_i / P_{\text{ref}}$ (gas) = $\gamma_i c_i / c_{\text{ref}}$ (solution)

 \triangleright General expression for the equilibrium constant

$$
\frac{a_{\rm C}^c \cdot a_{\rm D}^d}{a_{\rm A}^a \cdot a_{\rm B}^b} = K
$$

14.4 THE LAW OF MASS ACTION FOR RELATED AND SIMULTANEOUS EQUILIBRIA

- ◆ Relationships among Equilibrium Expressions
	- **Reversed reaction → Inversed** *K*
		- 2 H₂(g) + O₂(g) \leftrightarrows 2 H₂O(g), $K_1 = P(H_2O)^2 / P(H_2)^2 P(O_2)$ $2 H_2O(g)$ $\leq 2 H_2(g) + O_2(g)$, $K_2 = P(H_2)^2 P(O_2) / P(H_2O)^2 = K_1^{-1}$
	- **Multiplied by a constant →** *K* **raised to a power equal to the constant**

 $H_2(g) + (1/2) O_2(g) \leftrightarrows H_2O(g),$ $K_3 = P(H_2O) / P(H_2)P(O_2)^{1/2} = K_1^{1/2}$

Addition (or Subtraction) of reactions → Multiplication (or Division) of *K***'s**

 $2 \text{ BrCl}(g) \leftrightarrows \text{Cl}_2(g) + \text{Br}_2$ (g), $K_1 = P(Cl_2)P(Br_2) / P(BrCl)^2$ $Br_2(g) + I_2(g) \leq 2 \text{ lBr}(g),$ $K_2 = P(\text{lBr})^2 / P(\text{Br}_2)P(I_2)$ $2 \text{ BrCl}(g) + I_2(g) \leftrightarrows 2 \text{ lBr}(g) + \text{Cl}_2(g), K_3 = ?$

 $K_3 = K_1 K_2 = P(\text{IBr})^2 P(\text{Cl}_2) / P(\text{BrCl})^2 P(\text{I}_2)$

EXAMPLE 14.7 \vert \vert

$$
\mathsf{At}\ 25\ ^\mathrm{o}\mathsf{C},
$$

$$
NO(g) + \frac{1}{2}O_2(g) \Rightarrow NO_2(g) \qquad K_1 = 1.3 \times 10^6
$$

$$
\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \rightarrow NO(g) \qquad K_2 = 6.5 \times 10^{-16}
$$

$$
N_2(g) + 2 O_2(g) \implies 2 NO_2(g) \qquad K_3 = ?
$$

$$
K_3 = (K_1 K_2)^2 = 7.1 \times 10^{-19}
$$

14.5 EQUILIBRIUM CALCULATIONS FOR GAS-PHASE AND HETEROGENEOUS REACTIONS

- **Step 1** Balanced chemical **equation**
- **Step 2** Partial pressures; (a) **initial** (b) **changes** (c) **equilibrium**
- **► Step 3 Approximation** schemes of neglecting a very small quantity

Evaluating Equilibrium Constants from Reaction Data

$CO(g) + Cl_2(g) \leftrightarrows COCl_2(g) \leftarrow \text{phose}$ EXAMPLE 14.8

At 600 °C, $P_0(CO) = 0.60$ atm, $P_0(Cl_2) = 1.10$ atm, initially.

 \rightarrow *P*(COCI₂) = 0.10 atm at equilibrium. $K = ?$

--

$$
K = \frac{P_{\text{COCl}_2}}{(P_{\text{CO}})(P_{\text{Cl}_2})}
$$

=
$$
\frac{(0.10)}{(0.50)(1.00)} = 0.20
$$

Calculating Equilibrium Compositions When K is known

EXAMPLE 14.10 $H_2(g) + I_2(g) \leftrightarrows 2 \text{ HI}(g)$

At 400 K, $P_0(H_2) = 1.320$ atm, $P_0(I_2) = 1.140$ atm, in a sealed tube. \rightarrow At 600 K, K = 92.6. $P(H_2)$, $P(I_2)$, and $P(H_1)$?

At 600 K, from the ideal gas law at const V,

*P***0** (H**²**) = 1.320 atm x (600 K / 400 K) = 1.980 atm *P***0** (I**2**) = 1.140 atm x (600 K / 400 K) = 1.710 atm

$$
K = \frac{(2x)^2}{(1.980 - x)(1.710 - x)} = 92.6
$$

x = **1.504** or 2.352 (*unphysical* !)

 $P(H_2) = 0.476$ atm, $P(I_2) = 0.206$ atm, $P(HI) = 3.009$ atm

CHEMICAL EQUILIBRIUM

- **14.6** The Direction of Change in Chemical Reactions: Empirical Description
- **14.7** The Direction of Change in Chemical Reactions: Thermodynamic Explanation
- **14.8** Distribution of a Single Species between Immiscible Phases: Extraction and Separation Processes

22

14.6 THE DIRECTION OF CHANGE IN CHEMICAL REACTIONS: EMPIRICAL DESCRIPTION

The Reaction Quotient, *Q*

 $aA + bB \nightharpoonup cC + dD$

$$
\mathcal{K}\!=\!\!\frac{\left(P_\text{C}^\text{eq}\right)^{\!\sigma}\left(P_\text{D}^\text{eq}\right)^{\!d}}{\left(P_\text{A}^\text{eq}\right)^{\!\theta}\left(P_\text{B}^\text{eq}\right)^{\!b}}
$$

Reaction quotient Equilibrium constant

 $N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g),$ $P(N_2) : P(H_2) = 1 : 3$

$$
K = \frac{P_{NH_3}^2}{P_{N_2} P_{H_2}^3} = \frac{P_{NH_3}^2}{\left(P_{H_2} / 3\right) P_{H_2}^3} = \frac{P_{NH_3}^2}{\left(P_{H_2}^4\right) / 3} \rightarrow P_{NH_3} \propto P_{H_2}^2
$$

Fig. 14.5 $N_2(g) + 3H_2(g) \leq 2NH_3(g)$ (a) *Q* < K : *Q* must increase, *forward* reaction,

Q > K : *Q* must decrease, *reverse* reaction

(b) From initial nonequilibrium conditions on either side of the parabola, the partial pressures approach equilibrium along lines with slope –2/3, because three moles of H_2 are consumed to produce two moles of N H_3 .

Free Energy Changes and the Reaction Quotient

$$
aA + bB \Leftrightarrow cC + dD
$$
\n
$$
\Delta G = \Delta G^{\circ} + RT \ln Q
$$
\n
$$
Q = \frac{(P_{\rm c}/P_{\rm ref})^c (P_{\rm b}/P_{\rm ref})^d}{(P_{\rm A}/P_{\rm ref})^a (P_{\rm B}/P_{\rm ref})^b}
$$
\nAt equilibrium, $\Delta G = 0$
\nand $Q \rightarrow K$.
\n
$$
\therefore \Delta G^{\circ} = -RT \ln K
$$
\n
$$
\Delta G = -RT \ln K + RT \ln Q
$$
\n
$$
= RT \ln (Q/K)
$$
\n
$$
P_{\rm UF} \text{ reactants}
$$
\nFig. 14.10 T1 reaction syste

Pure reactants

Pure products

Fig. 14.10 The free energy of a reaction system is plotted against its progress from pure reactants(left) to pure products (right).

External Effects on *K***: Principle of Le Châtelier**

Fig. 14.6 Partial pressure versus time for the equilibrium:

 $H_2(g) + I_2(g) \leftrightarrows 2 \text{ Hl}(g)$

(1) LHS of the dashed line: Approach to equilibrium (Ex. 14.10)

(2) Abrupt perturbation by increasing $P(H_2)$ to 2.0 atm.

(3) Le Châtelier principle works on the RHS of the dashed line:

Decrease in $P(1₂)$ and increase in *P*(HI), resulting in the decrease in $P(H_2)$ to counteract the perturbation.

(4) Approach to a new equilibrium!

Le Châtelier's principle (1884)

A system in equilibrium that is subject to a stress will react in a way that tends to counteract the stress.

Le Châtelier's principle predicts the direction of change of a system under an external perturbation.

Henry Le Châtelier (Fra, 1850-1936)

Effects of Changing the Concentration of a Reactant or Product

$H_2(g) + I_2(g) \leftrightarrows 2 \text{ HI}(g)$ EXAMPLE 14.15

An equilibrium mixture at 600 K (Ex. 14.10):

P(H**²**) = 0.4756 atm, *P*(I**²**) = 0.2056 atm, *P*(HI) = 3.009 atm $K(600 K) = 92.6$

► External perturbation (addition of H₂)

Abrupt increase of $P(H_2)$ to 2.000 atm

- \rightarrow New equilibrium reached
- \rightarrow New equilibrium partial pressures?

x = **0.1425** or 2.299 (*unphysical* !)

At new equilibrium,

 $P(H_2) = 1.86$ atm, $P(I_2) = 0.063$ atm, $P(HI) = 3.29$ atm

Effects of Changing the Volume

Fig. 14.7 An equilibrium mixture of P_2 and P_4 (center) is compressed (left) or expanded (right).

- \triangleright Compression \rightarrow Equilibrium shifts toward the forward direction.
- \triangleright Expansion \rightarrow Equilibrium shifts toward the backward direction.

General Chemistry I

KAIST

CHEMISTE

Effects of Changing the Temperature

 $2 \text{ NO}_2(g) \leq N_2O_4(g)$ high *T* low *T*

Exothermic

 $\Delta H (25^{\circ}C) = -58.02$ kJ mol⁻¹

$$
K = \frac{P_{N_2O_4}}{(P_{NO_2})^2}
$$

K(25°C) = P(N₂O₄)/P²(NO₂) = 8.8

Fig. 14.8 Equilibrium between N_2O_4 and $NO₂$ depends on temperature. Right: Ice bath at 0°C, Mostly N_2O_4 , Pale color Left: Water bath at 50 $\rm ^oC$, Mostly $\rm NO_2$, Deep color

• **The Haber process**

$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ Iron oxide catalyst

Maximizing the Yield of a Reaction

► Haber-Bosch process: Fixation of N₂ from air $N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g), \qquad \Delta H < 0$ (exothermic)

Large *K* at low *T* (slow reaction) and at high *P*

 $\rightarrow \,$ 500°C, 200 atm, catalyst, continuous NH₃ removal

14.7 THE DIRECTION OF CHANGE IN CHEMICAL REACTIONS: THERMODYNAMIC EXPLANATION

The Magnitude of the Equilibrium Constant

$$
\ln K = \frac{-\Delta G^{\circ}}{RT} = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}
$$

$$
K = \exp\left[\frac{-\Delta G^{\circ}}{RT}\right] = \exp\left[\frac{\Delta S^{\circ}}{R}\right] \exp\left[\frac{-\Delta H^{\circ}}{RT}\right]
$$

Large value of *K*

- \rightarrow For ΔS° positive and large and ΔH° negative and large
- \rightarrow Increasing the number of microstates ($\Delta S^{\circ} > 0$) and decreasing enthalpy $(\Delta H^{\circ} < 0)$

Free Energy Changes and the Reaction Quotient

$$
aA + bB \Leftrightarrow cC + dD
$$
\n
$$
\Delta G = \Delta G^{\circ} + RT \ln Q
$$
\n
$$
Q = \frac{(P_{\rm c}/P_{\rm ref})^c (P_{\rm b}/P_{\rm ref})^d}{(P_{\rm A}/P_{\rm ref})^a (P_{\rm B}/P_{\rm ref})^b}
$$
\nAt equilibrium, $\Delta G = 0$
\nand $Q \rightarrow K$.
\n
$$
\therefore \Delta G^{\circ} = -RT \ln K
$$
\n
$$
\Delta G = -RT \ln K + RT \ln Q
$$
\n
$$
= RT \ln (Q/K)
$$
\n
$$
P_{\rm UF} \text{ reactants}
$$
\nFig. 14.10 T1 reaction syste

 $Q < K$ $Q > K$ $(\Delta G)/(\Delta n) < 0 \ (\Delta G)/(\Delta n) > 0$ Equilibrium, $(\Delta G)/(\Delta n) = 0$

Pure reactants

Pure products

Fig. 14.10 The free energy of a reaction system is plotted against its progress from pure reactants(left) to pure products (right).

Temperature Dependence of Equilibrium Constants

Temperature Dependence of Equilibrium	
$-RT \ln K = \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ$	0
$\ln K = -\Delta G^\circ / RT$	-4
$= -\Delta H^\circ / RT + \Delta S^\circ / R$	-8
$\ln K_1 = -\frac{\Delta H^\circ}{RT_1} + \frac{\Delta S^\circ}{R}$	×4
$\ln K_2 = -\frac{\Delta H^\circ}{RT_2} + \frac{\Delta S^\circ}{R}$	−24
$\ln \left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$	−32
$\ln \left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$	−32
$\frac{1}{T_1} \cdot \frac{1}{T_2} = \frac{1}{T_1}$	
$\frac{1}{T_1} \cdot \frac{1}{T_2} = \frac{1}{T_1}$	
$\frac{1}{T_1} \cdot \frac{1}{T_2} = \frac{1}{T_1}$	

Van't Hoff equation

Fig. 14.11 Temperature dependence of the equilibrium constant for the reaction $N_2(g) + 3 H_2(g) = 2 NH_3(g)$

Effect of temperature change on *K*

 \rightarrow Depends on the sign of ΔH° ΔH° < 0 (exothermic) $K \downarrow$ as $T \uparrow$ $\Delta H^{\circ} > 0$ (endothermic) $K \uparrow$ as $T \uparrow$

EXAMPLE 10.13

The equilibrium constant K for the synthesis of ammonia is 6.8x10⁵ at 298 K. Predict its value at 400 K. $\Delta H_f^0(NH_3(g))$ = -46.11 kJmol⁻¹

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

$$
\Delta H_{\rm r}^{\circ} = 2\Delta H_{\rm f}^{\circ}(\text{NH}_3, \text{g}) = 2(-46.11 \text{ kJ} \cdot \text{mol}^{-1})
$$

= -92.22 kJ·mol⁻¹ or -92.22 × 10³ J·mol⁻¹

$$
-92.22 \text{ kJ·mol}^{-1}
$$

$$
\ln K_1 - \ln K_2 = -\frac{\Delta H_{\rm r}^{\circ}}{R} \left\{ \frac{1}{T_1} - \frac{1}{T_2} \right\} = \frac{-9.222 \times 10^4 \text{ J} \cdot \text{mol}^{-1}}{8.3145 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}} \times \left\{ \frac{1}{298 \text{ K}} - \frac{1}{400. \text{ K}} \right\}
$$

= -9.49

$$
K_2 = K_1 e^{-9.49} = (6.8 \times 10^5) \times e^{-9.49} = 51
$$

Temperature Dependence of Vapor Pressure

$$
H_2O(l) \iff H_2O(g) \qquad P_{H_2O(g)} = K
$$

$$
H_2O(l) \iff H_2O(g) \qquad P_{H_2O(g)} = K
$$

$$
\ln\left(\frac{K_2}{K_1}\right) = \ln\left(\frac{P_2}{P_1}\right) = -\frac{\Delta H_{vap}}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]
$$

At the normal boiling point, $T_1 = T_b$ at $P_1 = 1$ atm.

$$
\ln P = -\frac{\Delta H_{\text{vap}}}{R} \left[\frac{1}{T} - \frac{1}{T_{\text{b}}} \right]
$$

14.8 DISTRIBUTION OF A SINGLE SPECIES BETWEEN IMMISCIBLE PHASES: EXTRACTION AND SEPARATION PROCESSES

Heterogeneous equilibrium

Partitioning a solute species between two immiscible solvent phases

 I_2 in H₂O and CCl₄ $I_2(aq) \leq I_2(CCl_4)$

Partition coefficient, *K*

$$
K = \frac{\begin{bmatrix} I_2 \end{bmatrix}_{\text{CCl}_4}}{\begin{bmatrix} I_2 \end{bmatrix}_{aq}} = 85 \text{ (at } 25^{\circ}\text{C}) > 1 \sim I_2 \text{ more soluble in } \text{CCl}_4 \text{ than in } H_2\text{O}
$$

Shifting the equilibrium

Add I[–] in the water. $I_2(aq) + I^-(aq) \rightarrow I_3^-(aq)$ More $I_2(aq)$ in the water consumed.

Le Châtelier's principle causes more I_2 to move from CCl₄ to H₂O. **CHEMIS General Chemistry I**

Extraction Processes

 $[I_2(aq)]_i = 2.00 \times 10^{-3}$ M. 0.100 L of this aq solution is extracted with 0.050 L of CCI₄ at 25°C. $[I_2(aq)]_f = ?$ EXAMPLE 14.18

$$
n(I_2) = (2.00 \times 10^{-3} \text{ mol } L^{-1})(0.100 \text{ L})
$$

$$
= 2.00 \times 10^{-4} \text{ mol}
$$

Let *y* moles remain in aqueous solution.

 $\left[\mathrm{I}_2 \right]$ $\left[\mathrm{I}_2 \right]$ 4 4 2 J $_{\rm CCl}$ 2 $\frac{I_2 I_{\text{CCl}_4}}{I_2 I_{\text{CCl}_4}} = 85 = \frac{(2.00 \times 10^{-4} - y) / 0.050}{(2.00 \times 10^{-4} - y)^2}$ $\rm I_{\rm a}$ | $\rm v/0.100$ *aq y K y* $\times10^{-4}$ — $= = 0.0 =$

 $y = 4.6 \times 10^{-6}$ mol or 2.3%

Fig. 14.13. (a) I_2 (aq) on CCI_4 in a separatory funnel. (b) After shaking.

Chromatographic Separations

- \triangleright Separation technique based on partition equilibria
- \triangleright Continuous extraction process

Exchange of solute species between mobile and stationary phases

Partition ratio,
$$
K = \frac{[A]_{\text{stationary}}}{[A]_{\text{mobile}}}
$$

Paper chromatography Thin layer

chromatography (TLC)

For Chapter 14,

- Problem Sets
	- $: 9, 26, 53, 74, 105$
- Chapter Summary (Choose one)
	- : Chemical Equilibrium, The direction of chemical reactions

